71 research outputs found

    Selection Combiner in Time-Varying Amplify Forward Cooperative Communication

    Get PDF
    This research presents the diversity combining schemes for Multiple Symbol Double Differential Sphere Detection (MSDDSD) in a time-varying amplify-and-forward wireless cooperative communication network. Four diversity combiners, including direct combiner, Maximal Ratio Combiner (MRC), semi MRC and Selection Combiner (SC) are demonstrated and explained in details. A comprehensive error probability and outage probability performance analysis are carried through the flat fading Rayleigh environment for semi MRC and SC. Specifically, error performance analysis is obtained using the PDF for SC detectors. Finally, power allocation expression based on error performance minimization approach is presented for the proposed SC performance optimization. It is observed that the performance analysis matches well with the simulation results. Furthermore, the proposed SC scheme offers better performance among the conventional MRC and direct combiner schemes in the presence of frequency offsets

    ICT Convergence in Internet of Things – The Birth of Smart Factories

    Get PDF
    Over the past decade, most factories across developed parts of the world employ a varying amount of the manufacturing technologies including autonomous robots, RFID (radio frequency identification) technology, NCs (numerically controlled machines), wireless sensor networks embedded with specialized computerized softwares for sophisticated product designs, engineering analysis, and remote control of machinery, etc. The ultimate aim of these all dramatic developments in manufacturing sector is thus to achieve aspects such as shorter innovation / product life cycles and raising overall productivity via efficiently handling complex interactions among the various stages (functions, departments) of a production line. The notion, Factory of the Future, is an unpredictable heaven of efficaciousness, wherein, issues such as the flaws and downtime would be issues of the long forgotten age. This technical note thus provides an overview of this awesome revolution waiting to be soon realized in the manufacturing sector

    Fast Association Process (FAP) of Beacon Enabled for IEEE 802.15.4 in Strong Mobility

    Get PDF
    In strong mobility the mobile node association with a coordinator (static or mobile) is an important part of IEEE802.15.4 protocol. This research analyzes the mobile node association attempt process flows in detail. This research also proposes an enhanced association procedure names Fast Association Process (FAP) in strong mobility. FAP is introduced with new Association_Data request MAC command that increases the association period and provides fast association process in strong mobility. It reduces the redundant service primitives, avoid collision and decrease association attempt process delay. Comparing FAP with the original IEEE802.15.4 protocol, the number of association service primitives in FAP is 67% less than the original protocol, and the simulation results show that the association attempt time decreases 75%. FAP will get fast association attempt as the number of mobile nodes increased and nodes having strong mobility. It can be widely used in mobile wireless sensor network application

    Node Admission Control For Multimedia Traffic In Ad-Hoc WLANs

    Get PDF
    In this paper, we design an admission control scheme for ad hoc WLAN based on self-restraint mechanism. The self-restraint admission control mechanism is implemented in each of the wireless nodes instead of the access point (AP). It has two important admission control abilities: first, it can restrain itself from joining the network if the network channel is congested; second, a joining node can drop itself from the network if the channel becomes congested as a result of its admission. We simulate an ad hoc WLAN and show that the self-restraining mechanism works effectively in sustaining traffic in ad hoc WLAN and also protects real-time traffic

    Performance Evaluation of Beacon Enabled IEEE 802.15.4 MAC for Mobile Wireless Sensor Networks under NS-2

    Get PDF
    Wireless Sensor Network (WSN) has a large number of nodes capable of sensing, communicating and computing. WSNs have limitations due to limited storage, processing and transmission power. The IEEE802.15.4 Medium Access Control (MAC) protocol is used for low-rate wireless personal area network (LR-WPAN). LR-WPAN is basically designed for static wireless sensor networks. However, from literatures, we observed that IEEE802.15.4 is able to support weak mobility in mobile sensor networks [7]. This paper evaluates the IEEE802.15.4 MAC for strong mobility in mobile sensor network environments. We evaluate the performance of IEEE802.15.4 MAC based on both static and mobile coordinators, and taking into account two parameters which are speed and number of beacon orders. We observed the effect on association period, disassociation, and synchronization between the mobile node and the coordinator in strong mobility of mobile nodes. From the experiments, we obtained results on throughput, association and synchronization with different speed and beacon orders. We found that the IEEE802.15.4 cannot maintain association period in strong mobility. The weaknesses of mobile node association attempt and synchronization process degrade the overall performance of a network. We also identify some research problems that need to be addressed for successful implementation of MAC protocol with strong mobility in Mobile Wireless Sensor Networks

    Decoding of Decode and Forward (DF) Relay Protocol using Min-Sum Based Low Density Parity Check (LDPC) System

    Get PDF
    Decoding high complexity is a major issue to design a decode and forward (DF) relay protocol. Thus, the establishment of low complexity decoding system would beneficial to assist decode and forward relay protocol. This paper reviews existing methods for the min-sum based LDPC decoding system as the low complexity decoding system. Reference lists of chosen articles were further reviewed for associated publications. This paper introduces comprehensive system model representing and describing the methods developed for LDPC based for DF relay protocol. It is consists of a number of components: (1) encoder and modulation at the source node, (2) demodulation, decoding, encoding and modulation at relay node, and (3) demodulation and decoding at the destination node. This paper also proposes a new taxonomy for min-sum based LDPC decoding techniques, highlights some of the most important components such as data used, result performances and profiles the Variable and Check Node (VCN) operation methods that have the potential to be used in DF relay protocol. Min-sum based LDPC decoding methods have the potential to provide an objective measure the best tradeoff between low complexities decoding process and the decoding error performance, and emerge as a cost-effective solution for practical application

    Adaptive Segregation-Based MAC Protocol for Real-Time Multimedia Traffic in WLANs

    Get PDF
    Wireless local area networks (WLANs) have become very popular both in private and public sectors. Despite the fast expansion of WLANs in various environments, quality of service (QoS) issues for multimedia applications in WLANs are not yet resolved. Multimedia applications contain traffic that are sensitive to delay and jitter and therefore a best-effort protocol such as the legacy IEEE 802.11 is not suitable. The 802.11e protocol provides prioritization and classification of traffic to offer better QoS for real-time services. However, it leaves the design and implementation of many important optimization features to vendors. In this paper we introduce a mechanism to improve the delay and jitter of real-time traffic in WLAN nodes supporting multimedia applications. In our proposed mechanism, we segregate voice and video traffic from the best-effort traffic. We create a scheduler that schedules the access of real-time traffic and non real-time traffic to the medium with centralized polling and distributed contention respectively. We show that our proposed protocol performs better in terms of delay and jitter than the legacy 802.11 and 802.11e in a scenario where all wireless nodes carry multimedia traffic simultaneously

    CFD Modelling of pump as turbine with various number of blade for microhydro system

    Get PDF
    Pump as Turbine is an electromechanically component that is largely used in microhydro system. The main advantages of pump as turbine compared to commercially available turbines are lower cost, easier to maintain and readily available. These key features make them appealing to conditions in many developing countries. However, pump as turbine has poor hydraulic performance and low efficiency thus modifications were applied to improve the performance. The aim of this paper is to study the effect of impeller blade number to the pump as turbine performance. The investigation was carried out by using commercial Computational Fluid Dynamic (CFD) software, ANSYS CFX. A centrifugal pump with a specific speed of 70 with an impeller diameter of 214.0 mm was used to generate the CAD model. The original number of the blade was at 6 and varied to 5, 7 and 8 while other geometric dimensions were kept unchanged. The simulation results reveal that the highest efficiency was attained at 7 blade number with the efficiency recorded at 76.24%. The corresponding pressure was at 20.83 meters. It was found that with increase of blade number, the efficiency and corresponding pressure of the pump as turbine also increases. However, the additional blade number reduce the cross-area flow path, consequently increase the blockage effect thus decrease the net power generated by the rotating impeller

    Distributed Double Differential Space-Time Coding with Amplify-and-Forward Relaying

    Get PDF
    This paper provides the double differentially modulated distributed space-time coding for amplify-andforward (AF) relaying cooperative communications system under time-varying fading channels. In many wireless systems, the communication terminals are mobile. In such case, frequency offsets arise subjected to Doppler’s effect and frequency mismatch amongst the terminals’ local oscillators. The double differential coding is proposed to overcome the problem of frequency offsets that present in the channel due to the rapidly fast moving nodes. The advantage of the double differential is that the scheme requires neither channel nor frequency offset knowledge for decoding process at the desired destination. However, the conventional two-codeword approach fails to perform and leads to error floor, a region where the error probability performance curve flattens for high signal-to-noise ratio (SNR) regime in fast fading environment. Hence, a low complexity multiple-codeword double differential sphere decoding (MCDDSD) is proposed. The simulation results show that the proposed MCDDSD significantly improve the system performance in time-varying environment
    • …
    corecore